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Abstract 

The predicate “ 1_ { , , }m nat least x x k= ” says that ``at least m of ix ’s take value k. 

This, and its generalisations, is one of the most commonly used predicates in 

Constraint Satisfaction. The structure of its feasibility set is exhibited. The facet 

defining constraints for the convex hull are then described and proved. The 

differences of the convex hulls are shown when the variables are or are not bounded 

above.  
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1. Introduction 

In [4], we described a tight linear inequality representation of the logic predicate 

, which says that all variables from a given set always take different values. In this 

work, we discuss another important predicate. Given a set of variables 

_all different

1 2{ , , }nx x x , where 

ix ’s take non-negative integer values, we consider a predicate “at least m of ix ’s take a 

particular value k”. This can be denoted as 

1 2_ { , , }m nat least x x x k=             (1) 

Denote the set of all points satisfying (1) by S . We point out that  unless finite upper 

bounds are placed on the ix ’s the condition is not representable by linear inequalities. We denote 

the convex hull of  by . We identify all facets of . S ( )conv S ( )conv S
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This is a generalization of the important logical condition expressed when  and the 1k =

ix  are 0-1 variables expressing a lower bound on the cardinality of a set. It was shown by 

McKinnon and Williams [2] that this predicate plays a fundamental role in integer programming 

formulation, if one  allows nesting of the  condition (expressed in that paper as 

“ ”), i.e. the truth of the predicate is itself equivalent to another 

0-1 variable taking the value 1.  

_at least

_ _ _ _greater than or equal to

By exploring such “building blocks” of integer programming formulation and identifying 

their convex hull, we aim to provide a framework for obtaining tighter linear programming 

relaxations for practical integer programming formulations. 

The paper is arranged as follows: Section 2 gives a simple example of the  

predicate. It discusses two important cases: when the variables are not bounded above and when 

the variables are bounded above. For these cases, the convex hull descriptions have some 

significant difference. Section 3 focuses on the convex hull representation of the predicate 

“ ” with all unbounded variables. Section 4 concentrates on the convex hull description 

of the predicate with all variables bounded above. It is clear it would be easy to obtain the similar 

results when only a partial set of variables are bounded and others are not. Section 5 summarizes 

the research.   

_at least

_at least

 
 
2. Illustrative Examples 

We discuss the convex hull of an “ ”' predicate in two cases: when the variables 

are not bounded above, and when the variables are bounded above. In the first case, all variables 

will take any non-negative integer value. It is then clear that S  and  are unbounded. In 

the second case, without loss of the generality, we assume that all variables are bounded by the 

same value. The following two simple examples provide a preliminary understanding on the 

structure of the “ ” and on the .  

_at least

( )conv S

_at least ( )conv S

Consider predicate 1 1 2_ { , } 2at least x x = . In the first case, let both 1x  and 2x  be 

bounded by a positive integer L , 1x L≤  and 2x L≤ . Then it is clear that  is given by ( )conv S

\begin{eqnarray} 
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and is illustrated by Figure 1, where all the poins in  are located on the dotted lines. S
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Figure 1.  when ( )conv S 1x  and 2x   are bounded. 

In the second case, both 1x  and 2x   are unbounded above. Then it is easy to see that 

 is given by ( )conv S

1 2

1

2
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0
0

x x
x
x

+ ≥
≥
≥

              (3) 

and is illustrated by Figure 2. 
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Figure 2.  when ( )conv S 1x  and 2x   are unbounded. 

In Figure 2, the feasible set is given by the two dotted lines. Each of these two lines is a polytope. 

But each polytope has a different recession direction. It is proved by Jeroslow [1] that in this case 

the union of the polytopes is “non mixed integer programming representable”. That is, it cannot 

be represented as the feasible set of a finite collection of inequalities in continuous and integer 

variables. Therefore, we cannot represent the set as the feasible region of a (mixed) integer 

programme. In practice of course one can always find finite upper bounds that apply to the 

variable ix , but it is important to note the theoretical impossibility of representing the condition 

otherwise. However, it is still possible to define its convex hull as the minimum convex set 

containing the feasible solutions. Such a convex hull is unbounded. Perhaps it is interesting to see 

that (2) can be reduced to (3) by letting . L →∞

 
 
3. Convex Hull Representation of Predicate “ ” with Unbounded 
Variables 

_at least

 
The following lemma is extended from Lemma 1 in [4].  

Lemma 1 Given a vector 

1 2( , , ),na a a  

where not all components ’s are the same and they are arranged in increasing order 

 and a vector 

ia

1 2 ,na a a≤ ≤ ≤

1 2( , , , ),nb b b  



where not all components ’s are the same. Rearrange components ’s in decreasing order, ib ib

' ' '
1 2 ,nb b b≥ ≥ ≥              (4) 

Then  

'

1 1
.

n n

i i i i
i i

a b a b
= =

<∑ ∑              (5)  

Proof: The result is shown by induction. For 2n = , since we assumed that not all ’s are the 

same and not all ’s are the same, then we have 

ia

ib

1 2 ,a a<      and     . 2 1b b>

Thus 

1 2 2 1 1 1 2 2 1 2 2 1( ) ( ) ( )( )a b a b a b a b a a b b+ − + = − − < 0

n

 

Assume that (5) holds for . Rearrange ’s such that (4) holds. If 1n− ib '
nb b= , then (5) holds for 

. Assume that  n

' , 1t tb b t n= ∀ ≤ .−

t t

0

 

Then 

1
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Since $ , thus . Then nb b≠ nb b>

( ) ( ) ( )( )t n n t t t n n t n n ta b a b a b a b a a b b+ − + = − − ≤   

Therefore,  
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Thus, (5) holds for all .          □ n

Lemma 2 Inequality  

1

n

i
i

x mk
=

≥∑        (6) 

is a facet of , the convex hull of feasible point set of (1). ( )conv S

Proof: First of all, it is obvious that (6) is valid for (1). Then, we show that it defines a facet by 

identifying n  affinely independent points of (1) on (6).  

We choose the first  points as the following. Let the first 1m+ 1m+  components of x , 

 take values 1( , , , )m mx x x +1

k
(0, , , , ),
( ,0, , , ),

( , , ,0, ),
( , , , ,0),

k k k
k k

k k k
k k k

 

and other components take values 0.  

The rest of the points all have the first 1m−  components taking value k . And let other 

components be 0 except jx k= , for 2, ,j m n= +  alternatively. That is, the n  points thus 

obtained are listed as the following, 



(0, , , , ,0,0, ,0),
( ,0, , , ,0,0, ,0),

( , , ,0, ,0,0, ,0),
( , , , ,0,0,0, ,0),
( , , ,0,0, ,0, ,0),
( , , ,0,0,0, , ,0),

( , , ,0,0,0,0, , ).

k k k
k k k

k k k
k k k
k k k
k k k

k k k

 

It is easy to see that they are affinely independent points. They are all on (6). Thus, (6) defines a 

facet.            □ 

Lemma 3 For ,  and , if  0ia ≠ 1, , ,i n= 0b >

1 1 n na x a x b+ + ≥       (7) 

defines a facet of , then it is a positive scalar multiple of (6). ( )conv S

Proof: Let (7) define a facet of . If ’s are different, then without loss of the generality, 

assume that  

( )conv S ia

1 2 .na a a≤ ≤ ≤  

Consider a point  on the facet, 1( , , )np x x=

1 1 n na x a x b+ + =  

Rearrange the components of  in decreasing order and we have a new point  1( , , )np x x= 'p

' ' '
1( , , )np x x=  

such that 

' '
1 .nx x≥ ≥  

Since 'p  is also a feasible point,  

' '
1 1 n na x a x b+ + ≥        (8) 

On the other hand, if not all ’s are the same, by Lemma 1, we have  ia



' '
1 1 1 1n n n na x a x a x a x b+ + < + + =       (9) 

This contradicts to (8). Thus we must have ia α= , for $i 1, ,i n=  and α  is a constant. Thus 

(7) is rewritten as 

1( n )x x bα + + ≥       (10) 

It is clear that 0α > , since otherwise (10) cannot be valid.  Therefore, (10) can be written as 

1 nx x b+ + ≥       (11) 

where /b b α= ≥ 0 . Since (11) is a facet, b  takes the smallest value, which is . This 

completes the proof.          □ 

mk

Note that  is an open set and unbounded above. Denote , the points which have 

exactly  elements taking value  and other elements taking value 0. Let 

S S ⊂ S

n

m k

{1, , }I =  and 1 1{ , , }.mI i i=  

Then,  is denoted by  S

1 1{( , , ) | ,  for , 0,  for \ }.n i iS x x x k i I x i I I= = ∈ = ∈ 1     (12) 

It is clear that x S∀ ∈ , there exists a point x S∈ such that x x≥ . That is, each element of x  

is no smaller than the corresponding element of x . The facet (6) has all points in  supported 

by it. Furthermore, we have the following, 

S

 Lemma 4 For , consider  nc R∈

min{ : }.cx x S∈           (13) 

S  is defined as (12). The optimal solution of (13) is achieved on some point in . That is, S

min{ : } min{ : }.cx x S cx x S∈ = ∈         (14) 

Proof: Since  is not bounded above, then for any element of c , S 0ic < , (13) will not have an 

optimal solution. On the other hand, if , then from the definition of , it is easy to see that 

(14) holds.           □ 

0c ≥ S

In this sense, we call (6) the “main facet”'. Since the tight representation of a predicate or 

a logical condition usually contains a large number of linear inequalities, it is always important to 



balance the tightness and the size of a ILP model. Therefore, sometimes we may only need to 

bring into the ILP model the main facet (for more details of the discussion, see [5] and [6]. 

Before presenting other facets of , let us consider a simple predicate as follows, ( )conv S

2 1 2 3_ { , , }at least x x x 2,=  

and 1x , 2x , 3x  are unbounded. The feasible set of (15) is shown in Figure 3, with vertices 

represented by circles on the graph. 

 

Figure 3.  for predicate (15) ( )conv S

From Figure 3, it is clear that in addition to facet 

1 2 3 4,x x x+ + ≥  

the following 3 inequalities 

1 2

2 3

1 3

2,
2,
2,

x x
x x
x x

+ ≥
+ ≥
+ ≥

 

are all facets. In fact, for example, it is clear that 1 2 2,x x+ ≥  is clearly a proper face. To show 

that it is a facet, we only need to identify 3 affinely independent points on it. By definition 1.4 



and 2.5 of [3], it is easy to see that (2, 0, 2), (0, 2, 2) and (0, 2, 3) are affinely independent on 

. The convex hull is described by 1 2 2x x+ =

1 2 3

1 2

2 3

1 3

1 2 3

4,
2,
2,
2

0, 0, 0.

x x x
x x
x x
x x
x x x

+ + ≥

+ ≥
+ ≥

+ ≥
≥ ≥ ≥

 

In the following, we give the general description of . First, we have the 

following 

( )conv S

Lemma 5 For an integer t  such that ( 1)n m t n,− − ≤ <  

1 1( ) , { , , } {1,
ti i t , }x x m n t k i i n+ + ≥ − + ⊆

,

                        (16) 

defines a facet of . ( )conv S

Proof: For  there are ( 1)n m t n− − ≤ < n t−  variables ix  not included in (16). Therefore, at 

most all these missing variables take value . Then there are at least k (m n t)− −  variables in (16) 

still taking value k . Thus, we must have 

1
( )

ti i .x x m n t k+ + ≥ − +  

That is, (16) is valid. To show that it is a facet, we need to identify n  affinely independent points 

on it. Note that as shown in the previous example, these points are necessarily in S . It is clear 

that we can take similar points as in the proof of Lemma 2, except that we can allow those 

variables not included in (16) to take values different than , for example  or  etc. To 

ensure these points are supported by (16), it is only necessary to keep  variables 

involved in (16) taking value .         □ 

k 1k + 2k +

(m n t− − )

k

Let  

1 1
1

( ) , { , , } {1, ,
( , , ) ,

, 1, , 1
ti i t

n

}x x m n t k i i n
P x x

t n n n m

⎧ ⎫+ + ≥ − + ⊆⎪ ⎪= ⎨ ⎬
= − − +⎪ ⎪⎩ ⎭

1

 

This description of  has 2  constraints. P n −

Combining lemmas above, we have,  



Theorem 1 The facets of  are defined by the inequalities in . In other words,  ( )conv S P

( )P conv S=        (17) 

        □ 

         

4.  Convex Hull Representation of Predicate “ ” with Bounded 
Variables 

_at least

 

This section consider the convex hull representation of the “ ”predicate where 

all variables are bounded above.  

_at least

It is common in constraint programming for variables to have constantly changing 

bounds, both lower and upper. However, the convex hull becomes very complex when the bounds 

are different.  In practice all the upper bounds can be set equal to the largest one when generating 

the convex hull. Therefore, in this research, we assume that all variables have the same upper 

bound. That is, 

1 2_ { , , , } , , 1, ,m n iat least x x x k x L i n.= ≤ =

3.

      (18) 

Again, let S  denote all the points satisfying (18) and  denote the convex hull of S . 

When all variables are bounded above, the convex hull of “ ” is more complicated. This 

can be seen from the following example. Consider 

( )conv S

_at least

2 1 2 3_ { , , } 2, 5, 1, 2,iat least x x x x i= ≤ =        (19) 



x1

x2

x3

2

2

2

3x1 + 3x2 - 2x3 ≥ 2

x1 + x2 ≥ 2

 

Figure 4.  for predicate (19) ( )conv S

It is not difficult to see that the convex hull of predicate (19) consists of the following three parts: 

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

4 ( )

3 3 2 2,
3 2 3 2,
2 3 4 2,

9 ( )

x x x km

x x x
x x x
x x x

x x x km L

+ + ≥

+ − ≥
− + ≥

− + + ≥

+ + ≤ +

 

In fact, with the similar process as in Lemma 1 in the last section, we can show the following. 

Lemma 6 Inequality  

1

n

i
i

x mk
=

≥∑             (20) 

defines a facet of . ( )conv S

Furthermore, another facet can be shown by the following lemma. 

Lemma 7 Inequality  

1
( )

n

i
i

x mk n m L
=

≤ + −∑            (21) 



defines a facet of . ( )conv S

The proof of Lemma 7 is rather lengthy, but not difficult. First, it is easy to see that (21) is valid, 

since at least m  of 1 2{ , , , }nx x x  take value  only k n m−  of ix ’s can achieve their upper 

bound L . Then we can identify n  affinely independent points in S  such that (20) holds as 

equation. 

The next lemma gives other facets of . ( )conv S

Lemma 8  For , denote {1, 2, , }I n=

1 1 2 2{ , , , } ; \ .m 1I i i i I I I I= ⊆ =  

Then, 1I I∀ ⊆ , inequality  

1 2

2( ) ( 1)i i
i I i I

L k x k x m Lk mk
∈ ∈

− − ≥ − −∑ ∑        (21) 

defines a facet of . ( )conv S

Proof:  First, we show that (21) is valid. Since ix L≤ , i I∀ ∈ , and that at least  of m ix ’s take 

value , the smallest that the left-hand-side can be is, by letting k ix L=  for   and 2i I∈ ix k=  

for  , 1i I∈

1 2

2

2

2

( ) ( )( ) ( )

( )
( 1) ( 1)
( 1)

i i
i I i I

L k x k x L k mk k n m L

mLk mk k n m L
m Lk mk n m L
m Lk mk

∈ ∈

− − ≥ − − −

= − − −

= − − − − −

≥ − −

∑ ∑

k

0

)

 

since  by definition. ( 1)n m− − ≥

Then, we show that (21) defines a facet by identifying n  affinely independent points of 

 on it.  S

We choose the first  points as the following. For all (n m− 1i I∈ , let ix k= ; and for 

each one , 2i I∈ ix L= , and for other 2i I∈ , let 0ix = . That is, 



( , , , , , 0, , 0),
( , , , , 0, , , 0),

( , , , , 0, 0, , ).

k k k L
k k k L

k k k L

 

It is clear that  

1 2

2( ) ( ) ( 1)i i
i I i I

L k x k x L k mk kL m kL mk
∈ ∈

− − = − − = − −∑ ∑  

The next  points are chosen as the following. For each one m 1i I∈  let 0ix =  and for other 

, let1i I∈ ix k= ; in all cases, for the first 2i I∈ , let ix k=  and all other 0ix = . That is, 

(0, , , , , 0, , 0),
( , 0, , , , 0, , 0),

( , , , 0, , 0, , 0).

k k k
k k k

k k k

 

Again, it is clearly that  

1 2

2 2( ) ( )( 1) ( 1)i i
i I i I

L k x k x L k m k k m kL mk
∈ ∈

− − = − − − = − −∑ ∑  

Then, the  points thus obtained are listed as rows of the following matrix n A , 

, , , , , 0, , 0
, , , , 0, , , 0

, , , , 0, 0, ,
0, , , , , 0, , 0

, 0, , , , 0, , 0

, , , 0, , 0, , 0

k k k L
k k k L

k k k L
A

k k k
k k k

k k k

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

 

It is not difficult to show that det( ) 0A ≠ . Thus the n  points identified above are affinely 

independent. Thus, (21) defines a facet.                   □ 

 
 
5. Conclusion 

By understanding the facial structure of such commonly used predicates in constraint 

satisfaction, we hope to contribute to the efficient solving of such models by integer 



programming but making use of the undoubted representational strength of constraint satisfaction. 

Our ambition is to extend our analysis of the  predicate to include nesting as done by 

McKinnon and Williams. It would then become possible to have a recursive procedure for 

defining the convex hull of an integer programming problem. 

_at least
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